位置:成果数据库 > 期刊 > 期刊详情页
Estimation of Battery State of Health Using Back Propagation Neural Network
  • ISSN号:1003-4951
  • 期刊名称:《计算机辅助绘图设计与制造:英文版》
  • 时间:0
  • 分类:TM744[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]ATECH Automotive Wuhu Co., Ltd, Wuhu 241009, China, [2]School of Machinery and Automobile Engineering, Hefei University of Technology, Hefei 230009, China, [3]Engineering Research Center of Safety-critical Industry Measure and Control Technology of Ministry of Education, Hefei 230009, China.
  • 相关基金:Supported by Special Topic of the Ministry of Education about Humanities and Social Sciences of China (No. 12JDGC007) and International Scientific and Technological Cooperation Projects of China (No.2012DFB 10060).
中文摘要:

100 pieces of 26650-type Lithium iron phosphate(LiFePO4)batteries cycled with a fixed charge and discharge rate are tested,and the influence of the battery internal resistance and the instantaneous voltage drop at the start of discharge on the state of health(SOH)is discussed.A back propagation(BP)neural network model using additional momentum is built up to estimate the state of health of Li-ion batteries.The additional 10 pieces are used to verify the feasibility of the proposed method.The results show that the neural network prediction model have a higher accuracy and can be embedded into battery management system(BMS)to estimate SOH of LiFePO4 Li-ion batteries.

英文摘要:

100 pieces of 26650-type Lithium iron phosphate(LiFePO4) batteries cycled with a fixed charge and discharge rate are tested, and the influence of the battery internal resistance and the instantaneous voltage drop at the start of discharge on the state of health(SOH) is discussed. A back propagation(BP) neural network model using additional momentum is built up to estimate the state of health of Li-ion batteries. The additional 10 pieces are used to verify the feasibility of the proposed method. The results show that the neural network prediction model have a higher accuracy and can be embedded into battery management system(BMS) to estimate SOH of LiFePO4 Li-ion batteries.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助绘图设计与制造:英文版》
  • 主管单位:
  • 主办单位:中国图学学会
  • 主编:张彩明
  • 地址:北京市海淀区学院路37号CADDM编辑部
  • 邮编:100191
  • 邮箱:txxbeditor@163.com
  • 电话:010-82317091
  • 国际标准刊号:ISSN:1003-4951
  • 国内统一刊号:ISSN:11-2862/TP
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:21