位置:成果数据库 > 期刊 > 期刊详情页
基于差分进化的布谷鸟搜索算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河池学院计算机与信息工程学院,广西宜州546300
  • 相关基金:国家自然科学基金资助项目(61165015);广西教育厅科研基金资助项目(201106LX577,201106LX604).
中文摘要:

针对基本布谷鸟搜索算法局部搜索能力弱、寻优精度低等不足,提出了一种具有差分进化策略的改进布谷鸟搜索算法.该算法是在种群进入下一次迭代之前在其个体上增加两个带权的差来实现个体变异,再对其进行交叉、选择操作得到最优个体,使缺乏变异机制的布谷鸟搜索算法具有变异能力,从而提高布谷鸟搜索算法的多样性,避免种群个体陷入局部最优,增强算法全局寻优能力.对几种经典测试函数和1个典型应用实例进行测试,仿真实验结果表明,新算法具有更好的全局搜索能力,在收敛精度、收敛速度以及寻优成功率等性能上显著优于基本布谷鸟搜索算法.

英文摘要:

In order to solve the problems of Cuckoo Search (CS) algorithm including low optimizing accuracy and weak local search ability, an improved CS algorithm with differential evolution strategy was presented. The individual variation was completed in the algorithm before population with two weighted differences increased on its individuals entering the next iteration, then crossover operation and select operation were performed to obtain optimal individual, which making the CS algorithm lack of mutation mechanism have the variation mechanism, so as to increase the diversity of the CS algorithm, avoid individual species into local optimum and enhance the global optimization ability. The algorithm was put through several classical test functions and a typical application example. The simulation results show that the new algorithm has better global searching ability, and the convergence precision, convergence speed and optimization success rate are significantly better than those of the basic CS algorithm.

同期刊论文项目
期刊论文 62 会议论文 1 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679