位置:成果数据库 > 期刊 > 期刊详情页
自适应边界逼近的原型选择算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学计算机学院,西安710071, [2]陕西师范大学远程教育学院,西安710062
  • 相关基金:国家自然科学基金项目(No.61472297)资助
中文摘要:

针对传统原型选择算法易受样本读取序列、异常样本等干扰的缺陷,通过分析原型算法学习规则,借鉴最近特征线法思想,改进传统原型算法,提出一种自适应边界逼近的原型选择算法。该算法在原型学习过程中改进压缩近邻法的同类近邻吸收策略,保留更优于当前最近边界原型的同类样本,同时建立原型更新准则,并运用该准则实现原型集的周期性动态更新。该算法不仅克服读取序列、异常样本对原型选取的影响,而且降低原型集规模。最后通过人工数据和UCI基准数据集验证文中算法。实验表明,文中算法选择的原型集比其他算法产生的原型集更能体现数据集的分布特征,平均压缩率有所提高,且分类精度与运行时间优于其他算法。

英文摘要:

The traditional prototype selection algorithms are susceptible to pattern reading sequence, abnormal patterns etc. Aiming at these problems, an improved prototype selection algorithm based on adaptive boundary approximation is proposed by a detailed analysis of the prototype learning rule. The prototype absorption strategy of condensed nearest neighbor algorithm ( CNN ) is improved and the closer homogeneous boundary prototype parallel to its current nearest one is retained. Meanwhile, the prototype updating strategy is built for achieving dynamic periodic updating to the prototype set. The proposed algorithm can overcome the above mentioned issues and effectively reduce the scale of prototype set. Experiments are made on the artificial dataset and UCI benchmark dataset, and the results show that the final prototype set obtained by the proposed algorithm reflects the distribution of the original dataset much better. It improves the average reduction ratio performance, has better classification accuracy and runs faster than other algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169