随着高通量生物组学数据生成技术的不断发展,近几年的生命科学研究的研发方法也出现较大的变革。海量的生物数据分析迫切需求现代大数据工具和技术。GPU在浮点运算、并行性以及能耗上与其他技术相比有显著的优势,其作为一种通用计算工具越来越受到重视。GPU很早就被用运用到生物信息学研究中,其加速效率一般能够达到两个数量级以上。文章主要概述GPU在生物信息学多个研究领域中应用,探讨GPU技术所适应的问题模型,并分析了其存在的不足。
With the rapid development of high-throughput OMICs technology in past few years, the research methodologies of life science have undergone tremendous changes. The analysis of numerous biological data urgent modern technologies and tools for big data analysis. Compared with other computing technologies, GPU has signiifcant advantages on lfoating operations, parallelism and energy consumption and gets more and more attention as a general-purpose computing device. Bioinformatics researchers apply GPU in their project and accelerate the program with a speed-up of two orders of magnitude as usual. In this paper, we will review GPU application in several ifelds of bioinformatics and discuss the features of problems which GPU is capable of and its shortcomings.