目的 提出一种适用于中小型薄壁片状类零件提高表面质量的贴壁式振动光饰加工技术方案。方法 选取球形棕刚玉磨块,HYA磨液作为加工介质,选用45~#钢、钛合金TC4(Ti-6Al-4V)、铝合金(A356)、304不锈钢4种材料,进行试件尺寸为10 mm×20 mm×3 mm的10 mm×20 mm单面贴壁加工实验及自由式加工实验。通过对比自由式与贴壁式加工中五个不同位置加工后试件的表面粗糙度值,以确定贴壁式振动光饰加工的优势及贴壁式相对最佳加工位置。使用动态力传感器测试了对应五个不同位置处磨块对传感器(即磨块对试件)的动态力,找出不同加工位置处试件受力规律。结果 初始表面粗糙度Ra值约为2.6μm的两组45~#钢试件的加工实验中,1 h时自由式加工试件Ra值仍为2.4μm,贴壁式加工试件已小于0.5μm。不同位置加工的钛合金、铝合金、不锈钢试件实验结果得出,容器底部位置是相对最佳加工位置,容器内侧中部位置其次,均明显优于其余三个位置,容器内侧上部、外侧中部和上部位置对加工效果的影响规律不明显。动态力测试结果得出,容器底部位置处磨块对传感器的平均力最大,为2.728 N,容器内侧中部、外侧中部、内侧上部、外侧上部位置依次降低,不同位置受力分布总体趋势与试件加工结果基本对应。结论 贴壁式加工较自由式加工效率高,容器底部是获取试件相对最佳表面粗糙度的加工位置,试件加工效果与试件受磨块动态力的大小有直接关系。贴壁式振动光饰加工技术可应用于中小型薄壁片状类零件表面质量的提高。
The work aims to propose an adherent vibratory finishing processing technology for small and medium-sized sheet specimens to improve surface quality. Spherical corundum abrasive particles and HYA grinding fluid were selected asprocessing medium. Processing experiments for single-sided adherent specimens and free specimens were conducted using four kinds of specimens made from 45# steel, titanium alloy TC4 (Ti-6Al-4V), aluminum alloy (A356) and 304 stainless steel. The specimen size was 10 mm× 20 mm×3 mm, and 10 mm × 20 mm surface was processed during adherent vibratory finishing. Surface roughness value of the free specimens and adherent specimens in 5 different positions was compared before and after processing to determine advantages of adherent vibratory finishing and the relative optimal processing position. Dynamic forces of abrasive particles to the sensor (i.e., the abrasive particles to the specimen) in 5 different positions were tested using a dy- namic force sensor, so as to find load-carrying rule in different processing position. In the processing experiment of two sets of 45# steel specimens with initial surface roughness Ra value of about 2.6 μm, the Ra value of the free specimens was still 2.4 μm in 1 h, and for adherent specimen, less than 0.5 μm. According to the experimental results of titanium alloy, aluminum alloy and stainless steel specimens processed in different positions, the bottom of the container was the relative optimal processing posi- tion, followed by inner middle position, which was superior to other three positions. The influence rule of inner upper position, outer middle position and outer upper position on processing effect was not obvious. Average force of abrasive particles to the sensor at the bottom of the container was the maximum, which was 2.728 N. And the dynamic force at the position of inner middle position, outer middle position, inner upper position and outer upper decreased successively. Overall trend of the force distribution in different positio