设(M,G)为n维复Finsler流形,TM为M的全纯切丛,得到了TM上的Hermite度量hTM=Gi-↑j(z,υ)dz^i×d-↑z^j+Gi-↑j(z,υ)δυ^i×δ-↑υ^j为Kaehler度量的充要条件是M为全纯曲率为0的Kaehler流形,其中Gi-↑j=δ^2G/δυ^iδ-↑υ^j,1≤i,j≤n.推广了Cao-Wong的某些结果.
Let (M, G) be a complex Finsler manifold of dimension n and TM its holomorphic tangent bundle. It is proved that the Hermitian metric hTM=Gi-↑j(z,υ)dz^i×d-↑z^j+Gi-↑j(z,υ)δυ^i×δ-↑υ^j on TM is Kaehlerian if and only if (M, G) is a Kaehler manifold with zero holomorphic sectional curvature, where Gi-↑j=δ^2G/δυ^iδ-↑υ^j,1≤i,j≤n. It extends partially some results of Cao-Wong.