设纽结方程N(O)=K0,N(O+R)=K1,其中0是有理缠绕或者是两个有理缠绕的和,R是整缠绕,并且O和R都是未知的缠绕,N是缠绕的分子的构造,Ki(i=0,1)是已知的纽结或链环.给出了当K0,K1其中一个是b(1,0)或者是b(0,1)情形的缠绕方程的解.从而给出了DNA重组后的数学模型.
Consider the following mathematical model: N(O) = K0, N(O+R) = K1, where O is a rational tangle or the sum of two rational tangles, and R is a rational tangle, in addition, O and R are unknown tangles, N is the numerator construction of the tangle, and Ki (i = 0, 1) are the known knots or links. Give the solutions of these tangle equations that one of K0, K1is b(1, 0) or b(0, 1). Furthermore, one can obtain the DNA recombination model.