位置:成果数据库 > 期刊 > 期刊详情页
基于稀疏贝叶斯学习的高效DOA估计方法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]解放军理工大学通信工程学院,南京210007
  • 相关基金:国家自然科学基金(61271354); 国家留学基金资助课题
中文摘要:

针对采用l 1范数优化的稀疏表示DOA估计算法正则化参数选取困难、计算复杂度高的问题,该文提出一种基于稀疏贝叶斯学习的高效算法。该算法首先利用均匀线阵的结构特性,将DOA估计联合稀疏模型的构建与求解转换到实数域进行。其次,通过优化稀疏贝叶斯学习的基消除机制,使该算法具有更快的收敛速度。仿真结果表明,与l 1范数优化类算法相比,该文方法具有更高的空间分辨率和估计精度且计算复杂度低。

英文摘要:

Sparsity-based Direction-Of-Arrival(DOA) estimation via l 1-norm optimization requires fine tuning of the regularization parameter and large computational times.To alleviate these problems,this paper presents an efficient approach based on Sparse Bayesian Learning(SBL).The presented approach constructs and solves the jointly sparse DOA estimation model in real domain by making good use of the special geometry of the uniform linear array.Furthermore,the basis pruning mechanism of sparse Bayesian learning is modified to speed up the convergence rate.Simulation results demonstrate that the presented approach provides higher spatial resolution and accuracy with lower computational complexity in comparison with those l 1-norm-based estimators.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739