位置:成果数据库 > 期刊 > 期刊详情页
基于自相似性和稀疏表示的图像超分辨率重建
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:国家自然科学基金项目(61371155,61174170)
中文摘要:

图像超分辨率重建技术在提升图像质量,改善图像视觉效果等方面有着重要意义。为了充分利用图像自身蕴含的信息,本文提出一种基于自相似性和稀疏表示的单幅图像超分辨率重建算法。针对图像中存在的相同尺度和不同尺度的相似结构,算法联合稀疏K-SVD字典学习方法和非局部均值方法将蕴含在其中的有效信息以正则项的形式加入到最大后验概率估计框架中,然后,采用梯度下降法求解算法构建的目标函数,重建出高分辨率图像。实验表明,与经典的算法相比,本文算法在视觉效果和评价指标上都有一定的提高。

英文摘要:

Super-resolution reconstruction plays an important role in adding the image details and improving the visual perception. In order to effectively exploit the effective information hidden in the image itself, we proposed a single image super-resolution reconstruction method based on self-similarity and sparse representation. The method combines sparse K-SVD dictionary learning and nonlocal means,which are used to add the effective information hidden in the same scale and across different scales structural self-similarity into the maximum a posteriori probability estimation framework by two different regularization terms. Then, a local optimal solution is obtained by using the gradient descent algorithm. The experimental results show that our method has a better improvement both visually and quantitatively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003