位置:成果数据库 > 期刊 > 期刊详情页
胶囊内窥镜无线遥测定位的校正
  • 期刊名称:光学精密工程
  • 时间:2010.12.12
  • 页码:2650-2655
  • 分类:TH776[机械工程—仪器科学与技术;机械工程—精密仪器及机械] TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海理工大学医疗器械与食品学院,上海200093, [2]上海交通大学电子信息与电气工程学院,上海200240
  • 相关基金:上海市教育委员会科研创新资助项目(No.10YZ93); 国家自然科学基金资助项目(No.30900320 No.6100164)
  • 相关项目:胶囊状微诊疗装置无线跟踪方法的传感机理研究
中文摘要:

为了进一步提高采用交流励磁定位无线跟踪胶囊内窥镜的定位精度,减小系统误差,提出了改进的神经网络定位校正方法。首先,设计了适应于胶囊内窥镜定位校正的神经网络结构;然后,采用Levenberg-Marquart算法结合贝叶斯正则化方法改进校正网络,抑制校正网络的过拟合。通过定位实验平台,建立了定位目标的跟踪位置与实际位置的样本对照数据表,并应用校正网络对定位数据进行校正。定位校正实验表明,改进的神经网络校正法可进一步减小定位误差,校正后的X,Y,Z,α,β分量的平均误差分别减小至8.7 mm,10.1 mm,7.3 mm,0.086 rad和0.081 rad。与基本BP算法相比,采用Levenberg-Marquart贝叶斯正则化的改进算法有效提高了定位校正网络的泛化能力和收敛精度。

英文摘要:

In order to non-invasively track a capsule endoscopy in the gastrointestinal tract,a telemetric localization method using alternating magnetic fields was presented.Focusing on the method,a Bayesian-regularization neural network based on the Levenberg-Marquart algorithm was investigated to reduce system errors.Firstly,the neural network structure for localization calibration was designed.Then,both Bayesian-regularization and Levenberg-Marquart algorithms were used to train the neural network to limit an over-fitting.Using an experimental platform for localization,both the calibration table for training the network and the validation table for verifying the calibration quality were established,and the location data were calibrated by the trained neural network.The calibration experiment shows that the proposed neural network can be trained well enough to efficiently compensate the errors in electromagnetic localizing system.The mean errors of X,Y,Z,α,β respectively have been reduced to 8.7 mm,10.1 mm,7.3 mm,0.086 rad and 0.081 rad after calibration.Comparing with the standard Back-Propagation(BP) algorithm,the Bayesian-regularization neural network based on Levenberg-Marquart algorithm has better performance in the generalization capability and convergence precision.

同期刊论文项目
同项目期刊论文