位置:成果数据库 > 期刊 > 期刊详情页
Separation Transformation and New Exact Solutions of the (N+1)-dimensional Dispersive Double sine-Gordon Equation
  • ISSN号:0253-6102
  • 期刊名称:《理论物理通讯:英文版》
  • 时间:0
  • 分类:O19[理学—数学;理学—基础数学] O175.29[理学—数学;理学—基础数学]
  • 作者机构:[1]Department of Physics, College of Science, Hebei North University, Zhangjiakou 075000, China, [2]School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081, China, [3]Department of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 相关基金:Supported by NSFC for Young Scholars under Grant No. 11101166, Tianyuan Youth Foundation of Mathematics under Grant No. 11126244, Youth PhD Development Fund of CUFE 121 Talent Cultivation Project under Grant No. QBJZH201002 and Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201110772017
中文摘要:

In this paper,the separation transformation approach is extended to the(N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of 3 He superfluid.This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation.Then the general solutions of the set of partial differential equations are obtained and the nonlinear ordinary differential equation is solved by F-expansion method.Finally,many new exact solutions of the(N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation.For the case of N > 2,there is an arbitrary function in the exact solutions,which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.

英文摘要:

In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obta/ned and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N 〉 2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《理论物理通讯:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中科院理论物理所 中国物理学会
  • 主编:孙昌浦
  • 地址:北京2735邮政信箱 中国科学院理论物理研究所编辑部
  • 邮编:100190
  • 邮箱:ctp@itp.ac.cn
  • 电话:010-62551495 62541813 62550630
  • 国际标准刊号:ISSN:0253-6102
  • 国内统一刊号:ISSN:11-2592/O3
  • 邮发代号:
  • 获奖情况:
  • 首届国家期刊奖,中国科学院优秀期刊特别奖,国家期刊奖百种重点期刊,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:342