这篇论文的目的是在结构的动态反应上评估 uncertain-but-bounded 参数的效果。由联合间隔数学和有限元素分析,集体矩阵,抑制矩阵,僵硬矩阵和外部负载作为间隔矩阵和向量被代表。在优化理论的帮助下,我们在场为决定准确上面的界限和准确更低的界限或结构,这些参数在到达他们的极端的动态反应的最小的值的顶点解决方案定理在间隔团的边界上珍视,抑制,僵硬矩阵和间隔外部负担向量。三个例子被用来说明介绍顶点答案定理的计算方面。
The aim of this paper is to evaluate the effects of uncertain-but-bounded parameters on the dynamic response of structures. By combining the interval mathematics and the finite element analysis, the mass matrix, damping matrix, stiffness matrix and the external loads are represented as interval matrices and vector. With the help of the optimization theory, we present the vertex solution theorem for determining both the exact upper bounds or maximum values and the exact lower bounds or minimum values of the dynamic response of structures, in which these parameters reach their extreme values on the boundary of the interval mass, damping, stiffness matrices and the interval extemal loads vector. Three examples are used to illustrate the computational aspects of the presented vertex solution theorem.