应用无源性分析研究时变非线性系统的稳定性。通过引进一个非线性复合微分算子d1(x)=k(x)s和一个时变非线性复合微分算子du(x,t)=k(x,t)sk(x,t),讨论了基于无源系统理论的时变非线性系统的稳定性分析。这里S=d/dt为普通的微分算子,x为所研究系统的状态变量。应用复合微分算子,构造出了一类严格无源的时变非线性系统,进一步给出了相应系统的渐近稳定条件。
A nonlinear composite differential operator d1 (x) = k(x)s and a nonlinear time-varying composite differential operator dU (x,t) = k(x, t)sk(x, t)are introduced in the paper.By using these composite differential operators,a strictly passive nonlinear and/or time-varying system can be constructed. And the asymptotic stability of the system can be determined.