我们使用了一个充分联合的化学气候模型(WACCM ) 调查 11a 的直接、间接的效果的相对重要性同温层的温度和臭氧上的太阳的变化。尽管模型不包含伪二年的摆动(QBO ) ,使用修理海表面温度(SST ) ,它能生产一秒最大的太阳的反应在热带更低同温层(TLS ) 约 0.5 K 的温度和臭氧并且 3% 分别地。在 TLS,太阳光谱在化学计划的变化比的起一个更重要的作用太阳光谱在在产生温度和臭氧回答的放射计划的变化。太阳的变化的化学效果在在 TLS 导致臭氧异例的酒商水虫(BD ) 发行量引起重要变化。模型模拟也在在温度和臭氧回答之间的上面的平流层显示出否定反馈。建模的臭氧和温度时间系列的小浪分析表明在化学、放射的效果引起的臭氧和温度的最大的太阳的回答在上面的平流层发生在不同高度。分析也两个都证实那直接放射、间接的臭氧反馈效果在在上面的同温层的温度产生太阳的回答是重要的,尽管太阳光谱在化学计划的变化在上面的同温层的温度给最大的太阳的周期力量。
We have used a fully coupled chemistry-climate model (WACCM) to investigate the relative importance of the direct and indirect effects of 1 la solar variations on stratospheric temperature and ozone. Although the model does not contain a quasi-biennial os- cillation (QBO) and uses fixed sea surface temperature (SST), it is able to produce a second maximum solar response in tropical lower stratospheric (TLS) temperature and ozone of approximately 0.5 K and 3%, respectively. In the TLS, the solar spectral vari- ations in the chemistry scheme play a more important role than solar spectral variations in the radiation scheme in generating temperature and ozone responses. The chemistry effect of solar variations causes significant changes in the Brewer-Dobson (BD) circulation resulting in ozone anomalies in the TLS. The model simulations also show a negative feedback in the upper strato- sphere between the temperature and ozone responses. A wavelet analysis of the modeled ozone and temperature time series re- veals that the maximum solar responses in ozone and temperature caused by both chemical and radiative effects occur at different altitudes in the upper stratosphere. The analysis also confirms that both the direct radiative and indirect ozone feedback effects are important in generating a solar response in the upper stratospheric temperatures, although the solar spectral variations in the chemistry scheme give the largest solar cycle power in the upper stratospheric temperature.