传统负荷预测算法在历史负荷序列无不良数据的条件下已能对短期负荷做出较为理想的预测。由于实际负荷数据在监测、集抄、存储过程中难免会产生错误或有所误差,此时仍依靠传统预测算法进行负荷预测,可能在某些时间节点会引起较大误差。为了解决此问题,提出含有历史负荷序列不良数据辨识与修正能力且能对负荷进行相似度预测及负荷偏差纠正的预测模型。通过运用实际电力负荷数据进行验证,该模型能较好地避免了不良数据的干扰,有效地提高了含有不良数据的历史负荷序列的预测精度。
Traditional load forecasting algorithm can predict short-term load when there is no bad data in historical load sequence. Actual load data will inevitably produce errors during the process of monitoring, collecting and storing, if the traditional prediction algorithm is still used for load forecasting, it may cause large errors at some time nodes. In order to solve this problem, this paper proposes a prediction model which can not only identify and correct the bad data of historical load sequence and but also predict the load similarity and correct the load deviation. By using the actual load data to verify the model, the model can better avoid the interference of bad data, and effectively improve the prediction accuracy of the historical load sequence with bad data.