A New Solution to the Hirota-Satsuma Coupled KdV Equations by the Dressing Method
- ISSN号:0253-6102
- 期刊名称:Communications in Theoretical Physics
- 时间:2013.9.9
- 页码:266-268
- 分类:O175.29[理学—数学;理学—基础数学]
- 作者机构:[1]郑州大学数学与统计学院,郑州450001, [2]河南财政税务高等专科学校信息工程系,郑州451464
- 相关基金:Project supported by the National Natural Science Foundations of China (11001250,11331008); the Foundation for Young Teachers in Colleges and Universities of Henan Province (2013GGJS-010); the Soft Science Foundation of Science and Technology Department of Henan Province (142400410274)
- 相关项目:谱变换在非线性可积方程初边值问题中的应用
中文摘要:
利用基于2×2矩阵(e)(Dbar)-问题的推广穿衣法,研究了一个耦合无色散方程,进而利用Cauchy矩阵的性质导出其孤立子解.此外,还讨论了N-孤立子解的渐近行为.
英文摘要:
The dressing method based on the 2 × 2 matrix 0(Dbar)-problem is generalized to study a coupled dispersionless equation, from which the explicit soliton solutions of the coupled dispersionless equation are constructed by virtue of the properties of the Cauchy matrix. Moreover, the asymptotic behaviors of the N-soliton solution are discussed.