通过对twitter网站上的转发和评论数据进行统计分析表明,用户的信息传播能力服从幂律分布。在此基础上,对以上2个实证数据集进行可视化仿真研究,结果显示某用户的微博被转发的人数越多,其对信息在网络中传播扩散的作用越大,但是不同的网络,关键节点对信息传播的影响程度不同。幂指数的大小决定了无标度网络中关键节点出度值的分布范围,幂指数越大,关键节点的出度值分布越均匀,其对信息在网络中的传播范围的影响相对越小。
In this paper, the empirical statistical analysis about the retweet and mention dataset on the twitter web- site indicate that user' s ability to spread information obey the power-law distribution. And the visual simulation study for the two empirical datasets mentioned above shows that the more people forward a user' s information he published, the more important role he plays in spreading information on the network. But different networks, the key nodes play a different effect in the information dissemination. The size of power exponent determines the range of key nodes' out-degree on the scale-free networks. The greater the power exponent, the more uniform distribution of the key nodes' out-degree, and it makes a small effect in the information diffusion on the network.