讨论了单位圆盘D上对数α-Bloch空间LB^α{f∈H(D):sup(z∈D)(1-|z|~2)~αln(2/(1-|z|~2))|f′(z)|〈+∞}的点乘算子和小对数α-Bloch空间LB0^α的循环元.主要得到以下结论:(i)点乘算子Mφ是LB^α间和LB0^α间上的有界算子的充要条件;(ii)若|f(z)|≥|g(z)|(z∈D),g是小对数α-Bloch空间LB0^α循环元,则f是LB0^α间的循环元.(iii)当0〈α〈1时,那么f是LB0^α间的循环元当且仅当f在闭单位圆盘上没有零点.
We study the pointwise multipliers in the logarithmicα-Bloch SpacesLB^α{f∈H(D):sup(z∈D)(1-|z|~2)~αln(2/(1-|z|~2))|f'(z)|+∞} and cyclic vectorsin the little logarithmicα-Bloch Spaces LB0^αWe obtain as follows.(i) A characterizationof multipliers on LB^αnd LB0^αs obtained.(ii) If|f(z)|≥|g(z)| in the openunit disk and g is cyclic in LB0^αthen f is cyclic in LB0^α(iii) If 0α1,then fis cyclic in LB0^αf and only if f has no zeros in the closed unit disc.