位置:成果数据库 > 期刊 > 期刊详情页
一种不确定数据流子空间聚类算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海理工大学光电信息与计算机工程学院,上海200093
  • 相关基金:国家自然科学基金资助项目(61202376);上海市教委科研创新项目(13YZ075)
中文摘要:

针对不确定数据流上的聚类问题提出一种不确定数据流子空间聚类算法UDSSC。该算法使用滑动窗口机制接收新到达的数据,剔除陈旧的数据;还引入子空间簇生成策略和新型离群点机制;系统建立了三个缓冲区分别存储新到来的元组、要进行聚类的元组和离群点元组,以此获得高质量的聚类结果。实验表明,UDSSC算法与同类型算法相比,具有更好的聚类效果、更低的时间复杂度和更强的扩展性。

英文摘要:

In order to cluster uncertain data stream, this paper proposed a subspace clustering algorithm for uncertain data stream, named UDSSC. Using a sliding window mechanism to receive new arrival data, and remove scale data. It introduced subspace clusters strategy and outliers mechanism, it established three buffers to reserve new arrival tuples, clustering tuples, and outliers to obtain good performance. Experiments show that the UDSSC algorithm has better clustering effect, lower time complexity and better expansibility.

同期刊论文项目
期刊论文 64 会议论文 3
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049