位置:成果数据库 > 期刊 > 期刊详情页
回声状态网络的递推训练算法
  • ISSN号:1671-4628
  • 期刊名称:北京化工大学学报(自然科学版)
  • 时间:2013.2
  • 页码:106-110
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京化工大学信息科学与技术学院,北京100029
  • 相关基金:国家自然科学基金(60974031/61174128)
  • 相关项目:数据与模型融合驱动的间歇聚合过程学习控制
中文摘要:

针对回声状态网络(ESN)传统的训练方法无法解决高维矩阵不可逆时的训练,以及无法应用于需要在线训练的建模当中等问题,提出了两种新的递推训练算法。分别将含遗忘因子递推最小二乘算法(FFRLS)和无先导卡尔曼滤波算法(UKF)应用到回声状态网络输出神经元为线性函数和非线性函数的权值训练中,进而直接对网络的输出权值进行递推更新。与传统的训练方法相比,所提新方法不仅具有在线更新、精度高的优点,而且还可以解决传统训练方法中批量数据构成的向量矩阵不可逆及输出神经元为非线性函数且其反函数不可求的问题。通过对连续搅拌釜式反应器(CSTR)浓度和温度的预测仿真,结果证明了所提新方法的有效性。

英文摘要:

Two new recursive algorithms are proposed in the light of the problems of the irreversibility of the high dimensional matrix, and the inability to apply online training, associated with a traditional echo state network (ESN). We put forward a forgetting factor recursive [east square (FFRLS) algorithm and an unscented Kalman filter (UKF) algorithm for the training of the connecting weights in association with the linear and nonlinear output neuron functions, which can directly and recursively update the output connecting weights. The proposed methods have the advantages of higher precision and can be updated online and, in addition, can solve problems associated with the traditional echo state network training methods, such as the batch data based matrix inversion being diffi- cult to perform, and the inability to solve the inverse of the nonlinear output function. Simulations of the concentra- tion and temperature in a continuous stirred tank reactor (CSTR) demonstrate the viability and effectiveness of our proposed methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京化工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京化工大学
  • 主编:刘振宇
  • 地址:北京市北三环东路15号
  • 邮编:100029
  • 邮箱:bhxbzr@126.com
  • 电话:010-64434926
  • 国际标准刊号:ISSN:1671-4628
  • 国内统一刊号:ISSN:11-4755/TQ
  • 邮发代号:82-657
  • 获奖情况:
  • 1999年教育部优秀科技期刊二等奖,1997年第二届全国科技期刊评比三等奖,1995年全国重点高校自然科学学报二等奖,中国期刊方阵“双效”期刊,首届高校优秀科技期刊,全国石化行业优秀期刊一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:9420