This paper studies self-synchronization and stability of a dual-motor driven vibration system with a two-stage vibration isolation frame. Oscillation amplitude of the material box large enough can be ensured on the vibration system in order to screen materials. Reduction of the dynamic load transmitted to the foundation can also be achieved for the vibration system. A Lagrange equation is used to set up the motion differential equations of the system, and a dimensionless coupled equation of the eccentric rotors is obtained using a method of modified average small parameter. According to the existence condition of zero solution in the dimensionless coupled equation of the eccentric rotors, the precondition for commencing self-synchronization motion is achieved.The stability condition of self-synchronization is obtained based on the Routh-Hurwitz criterion. The theoretical analysis is validated by simulations and experiments.
This paper studies self-synchronization and stability of a dual-motor driven vibration system with a two-stage vibration isolation frame. Oscillation amplitude of the material box large enough can be ensured on the vibration system in order to screen materials. Reduction of the dynamic load transmitted to the foundation can also be achieved for the vibration system. A Lagrange equation is used to set up the motion differential equations of the system, and a dimensionless coupled equation of the eccentric rotors is obtained using a method of modified average small parameter. According to the existence condition of zero solution in the dimensionless coupled equation of the eccentric rotors, the precondition for commencing self-synchronization motion is achieved.The stability condition of self-synchronization is obtained based on the Routh-Hurwitz criterion. The theoretical analysis is validated by simulations and experiments.