位置:成果数据库 > 期刊 > 期刊详情页
Congestion warning method based on the Internet of vehicles and community discovery of complex networks
  • ISSN号:1005-8885
  • 期刊名称:《中国邮电高校学报:英文版》
  • 分类:TN[电子电信]
  • 作者机构:School of Automation, Beijing Institute of Technology, Beijing 100081, China
  • 相关基金:supported by the National Natural Science Foundation of China(61433003,61273150); the Beijing Higher Education Young Elite Teacher Project(YETP1192)
中文摘要:

The traffic congestion occurs frequently in urban areas, while most existing solutions only take effects after congesting. In this paper, a congestion warning method is proposed based on the Internet of vehicles(IOV) and community discovery of complex networks. The communities in complex network model of traffic flow reflect the local aggregation of vehicles in the traffic system, and it is used to predict the upcoming congestion. The real-time information of vehicles on the roads is obtained from the IOV, which includes the locations, speeds and orientations of vehicles. Then the vehicles are mapped into nodes of network, the links between nodes are determined by the correlations between vehicles in terms of location and speed. The complex network model of traffic flow is hereby established. The communities in this complex network are discovered by fast Newman(FN) algorithm, and the congestion warnings are generated according to the communities selected by scale and density. This method can detect the tendency of traffic aggregation and provide warnings before congestion occurs. The simulations show that the method proposed in this paper is effective and practicable, and makes it possible to take action before traffic congestion.

英文摘要:

The traffic congestion occurs frequently in urban areas, while most existing solutions only take effects after congesting. In this paper, a congestion warning method is proposed based on the Internet of vehicles(IOV) and community discovery of complex networks. The communities in complex network model of traffic flow reflect the local aggregation of vehicles in the traffic system, and it is used to predict the upcoming congestion. The real-time information of vehicles on the roads is obtained from the IOV, which includes the locations, speeds and orientations of vehicles. Then the vehicles are mapped into nodes of network, the links between nodes are determined by the correlations between vehicles in terms of location and speed. The complex network model of traffic flow is hereby established. The communities in this complex network are discovered by fast Newman(FN) algorithm, and the congestion warnings are generated according to the communities selected by scale and density. This method can detect the tendency of traffic aggregation and provide warnings before congestion occurs. The simulations show that the method proposed in this paper is effective and practicable, and makes it possible to take action before traffic congestion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国邮电高校学报:英文版》
  • 主管单位:高教部
  • 主办单位:北京邮电大学、南邮、重邮、西邮、长邮、石邮
  • 主编:LU Yinghua
  • 地址:北京231信箱(中国邮电大学)
  • 邮编:100704
  • 邮箱:jchupt@bupt.edu.cn
  • 电话:010-62282493
  • 国际标准刊号:ISSN:1005-8885
  • 国内统一刊号:ISSN:11-3486/TN
  • 邮发代号:2-629
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库
  • 被引量:127