位置:成果数据库 > 期刊 > 期刊详情页
Multi-symplectic method for the generalized (2+1)-dimensional KdV-mKdV equation
  • ISSN号:0567-7718
  • 期刊名称:《力学学报:英文版》
  • 时间:0
  • 分类:O175.26[理学—数学;理学—基础数学] TV131.4[水利工程—水力学及河流动力学]
  • 作者机构:[1]School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnincal University, 710072 Xi'an, China, [2]State Key Laboratory of Mechanical System & Vibration,Shanghai Jiao Tong University,200240 Shanghai, China, [3]State Key Laboratory of StructuralAnalysis of Industrial Equipment,Dalian University of Technology, 116023 Dalian, China
  • 相关基金:The project was supported by the National Natural Science Foun- dation of China (11002115, 10972182, 11172239), the Science Foundation of Aviation of China (2010ZB53021), the China Post- doctoral Science Special Foundation (201003682), 111 project (B07050) to the Northwestern Polytechnical University, the NPU Foundation for Fundamental Research (JC200938, JC20110259), the Doctoral Program Foundation of Education Ministry of China (20106102110019), the Open Foundation of State Key Laboratory of Mechanical System & Vibration (MSV-2011-21) and the Open Foundation of State Key Laboratory of Structural Analysis of In- dustrial Equipment (GZ0802).
中文摘要:

在现在的纸,包含三个任意的函数为的一个一般解决方案概括(2+1 ) 维的 KdV-mKdV 方程,它被导出从概括(1+1 ) 维的 KdV-mKdV 方程,首先借助于 Wiess 被介绍,小鼓, Carnevale (WTC ) 截断方法。然后有考虑的几条能量守恒定律的 multisymplectic 明确的表达被介绍为概括(2+1 ) 维的 KdV-mKdV 方程基于桥的 multisymplectic 理论。随后,源于以便以 Jacobi 椭圆形的功能的合理功能模仿周期的波浪答案一般答案,一个半含蓄的 multi-symplectic 计划被构造那等价于 Preissmann 计划。从数字实验的结果,我们能断定 multi-symplectic 计划能精确地模仿周期的波浪答案概括(2+1 ) 维的 KdV-mKdV 方程当时近似保存能量守恒定律。

英文摘要:

In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《力学学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:卢天健
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:actams@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0567-7718
  • 国内统一刊号:ISSN:11-2063/O3
  • 邮发代号:2-703
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:352