欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Constraint qualifications for constrained Lipschitz optimization problems and applications to a MPCC
ISSN号:0362-546X
期刊名称:Nonlinear Analysis-Theory Methods & Applicatio
时间:2012.1.1
页码:526-542
相关项目:非凸锥优化的扰动分析与均衡锥优化问题
作者:
Zhang, Shaowu|Zhang, Jie|Zhang, Liwei|Wang, Wei|
同期刊论文项目
非凸锥优化的扰动分析与均衡锥优化问题
期刊论文 24
著作 1
同项目期刊论文
线性控制系统的无界多面体不变集
A SEQUENTIAL CONVEX PROGRAM METHOD TO DC PROGRAM WITH JOINT CHANCE CONSTRAINTS
Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach
A SMOOTHING NEWTON METHOD BASED ON SAMPLE AVERAGE APPROXIMATION FOR A CLASS OF STOCHASTIC GENERALIZE
A smoothing Newton method for mathematical programs constrained by parameterized quasi-variational i
On the Second-order Directional Derivatives of Singular Values of Matrices and Symmetric Matrix-valu
Quadratic model updating with gyroscopic structure from partial eigendata
Differential Properties of the Symmetric Matrix-Valued Fischer-Burmeister Function
On the Convergence of Coderivative of SAA Solution Mapping for a Parametric Stochastic Variational I
A class of smoothing SAA methods for a stochastic mathematical program with complementarity constrai
A PENALTY METHOD FOR GENERALIZED NASH EQUILIBRIUM PROBLEMS
On constraint qualifications in terms of approximate Jacobians for nonsmooth continuous optimization
Convergence Properties of a Smoothing Approach for Mathematical Programs with Second-Order Cone Comp
A smoothing SAA method for a stochastic mathematical program with complementarity constraints
A PERTURBATION APPROACH FOR AN INVERSE LINEAR SECOND-ORDER CONE PROGRAMMING
A smoothing Newton method for mathematical programs governed by second-order cone constrained genera
Consistency analysis of a local Lipschitz homeomorphism of an SAA normal mapping for a parametric st
An implementable augmented Lagrange method for solving fixed point problems with coupled constraints
追捕逃逸型微分对策问题的识别域判别
五点差分格式算法在数学物理方程中的应用
一类非线性奇异抛物方程解的渐进行为
非线性半定规划的雅可比唯一性定理