位置:成果数据库 > 期刊 > 期刊详情页
Automatic Product Image Classification with Multiple Support Vector Machine Classifiers
  • ISSN号:1007-3221
  • 期刊名称:《运筹与管理》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Faculty of Electronic Information &Electrical Engineering, Dalian University of Technology, Dalian 116023, Liaoning, China, [2]College of Electrical &Information, Dalian Jiaotong University, Dalian 116028, Liaoning, China
  • 相关基金:the National Natural Science Foundation of China (No. 70890083) and the Project of National Innovation Fund for Technology Based Firms (No. 09e26222123243)
中文摘要:

<正>For the task of visual-based automatic product image classification for e-commerce,this paper constructs a set of support vector machine(SVM) classifiers with different model representations.Each base SVM classifier is trained with either different types of features or different spatial levels.The probability outputs of these SVM classifiers are concatenated into feature vectors for training another SVM classifier with a Gaussian radial basis function(RBF) kernel.This scheme achieves state-of-the-art average accuracy of 86.9%for product image classification on the public product dataset PI 100.

英文摘要:

For the task of visual-based automatic product image classification for e-commerce, this paper constructs a set of support vector machine (SVM) classifiers with different model representations. Each base SVM classifier is trained with either different types of features or different spatial levels. The probability outputs of these SVM classifiers are concatenated into feature vectors for training another SVM classifier with a Oaussian radial basis function (RBF) kernel This scheme achieves state-of-the-art average accuracy of 86.9% for product image classification on the public product dataset PI 100.

同期刊论文项目
期刊论文 97 会议论文 66 获奖 48 著作 1
同项目期刊论文
期刊信息
  • 《运筹与管理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国运筹学会
  • 主编:俞嘉第
  • 地址:安徽省合肥市合肥工业大学系统工程研究所
  • 邮编:230009
  • 邮箱:xts_or@hfut.edu.cn
  • 电话:0551-2901503
  • 国际标准刊号:ISSN:1007-3221
  • 国内统一刊号:ISSN:34-1133/G3
  • 邮发代号:26-191
  • 获奖情况:
  • 安徽省优秀科技期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11977