<正>For the task of visual-based automatic product image classification for e-commerce,this paper constructs a set of support vector machine(SVM) classifiers with different model representations.Each base SVM classifier is trained with either different types of features or different spatial levels.The probability outputs of these SVM classifiers are concatenated into feature vectors for training another SVM classifier with a Gaussian radial basis function(RBF) kernel.This scheme achieves state-of-the-art average accuracy of 86.9%for product image classification on the public product dataset PI 100.
For the task of visual-based automatic product image classification for e-commerce, this paper constructs a set of support vector machine (SVM) classifiers with different model representations. Each base SVM classifier is trained with either different types of features or different spatial levels. The probability outputs of these SVM classifiers are concatenated into feature vectors for training another SVM classifier with a Oaussian radial basis function (RBF) kernel This scheme achieves state-of-the-art average accuracy of 86.9% for product image classification on the public product dataset PI 100.