通过使用Mawhin连续性定理,研究四阶p-Laplacian微分方程多时滞问题(Фp(x″(t)))″+f(t,x″(t))+^n∑i=1βi(t)g(x(t-γi(t)))=p(t)周期解的存在性,并得到了存在周期解的充分性条件.
By using the theory of coincidence degree, we study a kind of periodic solutions to a fourth order p-Laplacian differential equation with multiple deviating arguments as follows (Фp(x″(t)))″+f(t,x″(t))+^n∑i=1βi(t)g(x(t-γi(t)))=p(t)Under various assumptions, new results on the existence of periodic solutions are obtained