位置:成果数据库 > 期刊 > 期刊详情页
基于多标签CRF的疾病名称抽取
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:武汉大学计算机学院,武汉430072
  • 相关基金:国家自然科学基金重点资助项目(61133012);国家哲学社会科学重大计划招标项目(11&ZD189);国家自然科学基金资助项目(61173062)
中文摘要:

生物医疗文本中的命名实体识别对于构建和挖掘大型临床数据库以服务于临床决策具有重要意义,而其中一个基础工作是疾病名称的识别。医疗文本中存在大量的复合疾病名称,难以分离抽取出其中的实体。针对这一问题,提出一种基于多标签的条件随机场算法,首先对数据标注多层标签,每层标签针对复合疾病名称中的不同疾病,然后用整合后的最终标签去训练模型,最后再对模型预测的标签进行分离。此方法能够识别传统条件随机场算法无法识别的复合疾病名称,实验结果验证了所提算法的有效性。

英文摘要:

Named entity recognition in medical text for building and digging large clinical database to serve the clinical decision is of great significance, and one of the important basic work is to be able to accurately identify the name of the disease. There are a large number of compound disease name in the medical texts. In order to solve this problem, this paper proposed a kind of CRF algorithm based on multi-label, first of all, it put muhilayer labels to the data, labels on each floor for different diseases, and then integrated into an end label to training model, finally, it isolated each layer label from the model predicts result, and then identified the diseases. This method can recognize composite disease name which cannot be identified by the traditional CRF algorithm. The experimental results verify the effectiveness of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049