位置:成果数据库 > 期刊 > 期刊详情页
半监督谱聚类特征向量选择算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学智能感知与图像理解教育部重点实验室,西安710071
  • 相关基金:国家973计划项目(No.2006CB705707)、国家863计划项目(No.2008AA012125,2009AA122210)、国家自然科学基金项目(No.60702062,60970067)、教育部重点项目(No.108115)和高等学校学科创新引智计划项目(111计划)(No.B07048)资助
中文摘要:

对于一个K类问题,Ng—Jordan—Weiss(NJW)谱聚类算法通常采用数据规范化亲和度矩阵的前K个最大特征值对应的特征向量作为数据的一种表示.然而,对于某些模式识别问题,这K个特征向量不一定能够体现原始数据的结构.文中提出一种半监督谱聚类特征向量选择算法.该算法利用一定量的监督信息寻找能够体现数据结构的特征向量组合,进而获得优于传统谱聚类算法的聚类性能.UCI标准数据集和MNIST手写体数据集上的仿真实验验证该算法的有效性和鲁棒性.

英文摘要:

For a K clustering problem, Ng-Jordan-Weiss (NJW) spectral clustering method adopts the eigenvectors corresponding to the K largest eigenvalues of the normalized affinity matrix derived from a dataset as a novel representation of the original data. However, these K eigenvectors can not always reflect the structure of the original data for some pattern recognition problems. In this paper, a semi-supervised eigenvector selection method for spectral clustering is proposed. This method utilizes some amount of supervised information to search the eigenvector combination which can reflect the structure of the original data, and then obtains more satisfying performance than the classical spectral clustering algorithms. Experimental results on UCI benchmark datasets and MNIST handwritten digits datasets show that the proposed method is effective and robust.

同期刊论文项目
期刊论文 66 会议论文 6 专利 12 著作 2
期刊论文 27 会议论文 7 专利 13 著作 1
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169