针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较高识别率的分类器组合,使参与集成的分类器数量能够随识别目标的复杂程度而自适应地变化,并根据可信度实现系统的循环集成.在手写体数字识别实验中,与其他常用的分类器选择方法相比,所提出的方法灵活高效,识别率更高.
In order to deal with the problems of low efficiency and inflexibility for selecting the optimal subset and combining classifiers in multiple classifier systems, a new method of dynamic selection and circulating combination (DSCC) is proposed. This method dynamically selects the optimal subset with high accuracy for combination based on the complementarity of different classification models. The number of classifiers in the selected subset can be adaptively changed according to the complexity of the objects. Circulating combination is realized according to the confidence of classifiers. The experimental results of handwritten digit recognition show that the proposed method is more flexible, efficient and accurate comparing to other classifier selection methods.