建立了一类具有年龄结构和病程结构的传染病模型(SIS).分析了具有构造性迭代序列的模型的全局动力学性态并计算出了基本再生数R0.具体说明了基本再生数R0对整个动力学性态起到的阈值作用.也就是说,当R0〈1时,零平衡解是全局渐近稳定的,当R0〉1时,零平衡解是不稳定的,此时具有唯一的正平衡解.
A general SIS model with chronological age and infection age structure is formulated. The global dynamic bebavious of the model with a constructive iteration procedure are analyzed. The base productive number R0 is calculated by using the next generation operator approach. It is showed that R0 plays a sharp threshold role in determining the global dynamic behavious,i, e. , the zero equi- librium solution is globally asymptotically stable if R0〉 1, while the zero equilibrium solution is unstable and exists a unique positive equilibrium solution if R0〉 1.