利用Hilbert空间中有界线性算子的分块矩阵技巧,得到了关于P,Q两个幂等算子的几何结构之后,研究了幂等算子以及其乘积的线性组合的性质,证明了当C1(C2+C3)≠0,C2(C1+C3)≠0,C1+c2+c3≠0时,在c1/c2+c3 ∈[-1,0]或者c2/c1+c3 ∈[-1,0]的条件下,算子c1P+c2Q+c3PQ的值域闭性与系数组(c1,c2,c3)的选取无关,文中的主要定理推广了文献[1]中的定理。
Using the technique of block-operator matrices of bounded linear operators on a Hilbert space, the geometry structure of the two idempotent operators of P and Q is obtained. The properties of the combination of the idempotent operators and its product are studied. When0, and or, then the closeness of the is independent of the choice of. the result in [ 1 ] is generalized in this paper.