利用电化学方法,在多通道神经微电极阵列芯片上制备聚吡咯氧化石墨烯薄膜材料,并对该材料的电化学行为进行了分析。对神经微电极阵列芯片采用计时电压法探究,确定了定向修饰聚吡咯氧化石墨烯薄膜的最佳电沉积条件。微电极阵列芯片为多通道实时检测神经细胞的电生理和电化学信号提供了一种新的器件,但其检测灵敏度、信噪比需进一步的提高。将聚吡咯氧化石墨烯的平面微电极阻抗值降低了92.1%,且提高了对多巴胺循环伏安响应的灵敏度,对神经电生理信号和电化学信号的检测具有重要意义。
An efficient and reliable electrochemical method for preparing Polypyrrole Graphene oxide(PPy/GO) nanocomposites by electrodeposition on a planar microelectrode array(MEA) is reported. The electrodeposition process is carried out by chronopotentimetry measurement and the optimal condition is found. MEA is a practical tool for real-time electrophysiological evaluation of cultures and isolated tissues, especially suitable for stable long-term recording. Although MEA has these advantages, the low sensitivity and low signal-to-noise ratio still exist. The MEA electrodeposited by PPy/GO can reduce the electrochemical impedance by 92.1% and the increased response to dopamine has been observed, which is very significant for the neuro detection of electrophysiology and electrochemistry.