研究了降解温度、反应时间和添加剂对超临界正丙醇中炭纤维增强环氧树脂基复合材料回收的影响。利用扫描电镜、热重、X射线光电子能谱、接触角和单丝拉伸对回收炭纤维进行表征。结果表明,随温度的升高,复合材料降解速率加快,但回收炭纤维力学性能略微降低。随反应时间的延长,复合材料降解速率降低,回收炭纤维力学性能降低。1%质量含量的KOH能明显提高复合材料的回收效率。伴随KOH含量增加,复合材料降解速率没有明显提高,而使回收炭纤维力学性能变差。合适的反应条件对回收具有清洁表面、良好热稳定性和力学性能完好保留的炭纤维至关重要。回收炭纤维表面化学的微弱变化使回收炭纤维同环氧树脂的接触角略增加。超临界正丙醇是一种回收炭纤维复合材料的有效方法。
The effects of degradation temperature, reaction time and additive on the efficiency of the recovery of carbon fibers from their epoxy resin composites by supercdtical 1-propanol were investigated. The recycled carbon fibers were characterized using SEM, TGA, XPS, contact angle measurements and single fiber tensile strength tests. Results indicated that the rata of decomposi- tion of the resin increased, but the mechanical properties of the recycled fibers decreased slightly with temperature. The decomposi- tion rate of the resin and tensile strength of the recycled carbon fibers decreased with reaction time. 1 wt% of KOH additive in 1-propanol improved the recovery efficiency significantly. When the KOH concentration was increased beyond 1 wt% there was no obvious increase in the decomposition rate and the mechanical properties of the recycled fibers became worse. There were slight changes in the surface chemistry of the recycled carbon fibers and their contact angle with epoxy resin. Supercritical 1-propanol is an excellent recycling technology for carbon fibers in epoxy resin composites.