位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的复杂非线性黑箱系统在线辨识方法
  • ISSN号:1007-2373
  • 期刊名称:《河北工业大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]河北工业大学电气与自动化学院,天津300130
  • 相关基金:国家自然科学基金(50577014)
中文摘要:

支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,是一种新的具有很好泛化性能的回归方法,本文分析了采用神经网络方法进行非线性系统建模存在的缺点,并将SVM应用于复杂非线性黑箱系统模型的在线辨识当中,理论分析和实验证明,该方法学习速度快,跟踪性能好,泛化能力强,对样本的依赖程度低,比神经网络非线性系统建模具有更好的预测精度.

英文摘要:

Support vector is a learning technique based on the structural risk minimization principle, and it is also a kind of regression method with good generalization ability. This paper analyses the disadvantage of the method used for nonlinear dynamical systems identification based on neural networks, and uses support vector machine to model nonlinear dynamical systems. Theoretical and simulation analysis indicate that this method has the features of high learning speed, good generalization as well as approximation ability, and little dependence on sample set. The present method has the better prediction precision than the approach based on the neural network.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《河北工业大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:河北省教育厅
  • 主办单位:河北工业大学
  • 主编:郭士杰
  • 地址:天津市北辰区双口镇西平道5340号
  • 邮编:300401
  • 邮箱:xuebao@hebut.edu.cn
  • 电话:022-60438311
  • 国际标准刊号:ISSN:1007-2373
  • 国内统一刊号:ISSN:13-1208/T
  • 邮发代号:
  • 获奖情况:
  • 1999年河北省高校学报“三优”评比优秀学报一等奖,2000年河北省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:6302