图象形状特征能到图象 Zernike 时刻被描述。在这篇论文,我们指出高尺寸图象 Zernike 时刻塑造的问题特征向量能描述原来的图象的更多的详细,但是有太多元素为下一个图象分析阶段造成麻烦。然后,低尺寸图象 Zernike 时刻形状特征向量应该被改进并且优化了描述原来的图象的更多的详细。优化算法因此基于进化计算被设计并且在这篇论文实现了解决这个问题。试验性的结果表明优化算法的可行性。
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.