设Tn(K)为域K上的n×n上三角矩阵环.证明了当K〉2时,映射f:Tn(K)→Tn(K)是加性的当且仅当对任意可逆矩阵A,B∈Tn(K),都有f(A+B)=f(A)+f(B),并给出了当K=2时该结论不成立的反例.
Let T,(K) be the ring of all n×n upper triangular matrices over a field K. We prove that a map f:Tn(K)→Tn(K)is additive if and only if f (A+ B) = f (A) + f (B) for any two invertible matricesA,B∈Tn(K), when |K|〉2, and give a counter example which shows that the conclusion will not be true when |K| =2.