在国内外众多学者的不懈努力下,开发了大量的水质参数遥感估算反演模型,但不同的模型都具有其"局限性",只能从某个层面反映"真值".基于上述考虑,本研究发展了基于数据同化方法的太湖叶绿素a浓度多模型协同反演算法.利用2006~2009年太湖野外实测水体高光谱遥感反射率数据,构建了7个叶绿素a浓度反演模型;通过模型精度对比,最终遴选出6个适宜的叶绿素a浓度反演模型.进而使用不同模型组合,进行多模型协同反演.结果表明:1多模型协同反演算法的反演精度要高于单模型反演的反演精度,最优MAPE仅为22.4%;2随着参与多模型协同反演的模型个数的增加,其反演精度也逐渐提高,MAPE均值从25.6%降低到23.4%,RMSE均值从15.082μg·L-1降低到14.575μg·L-1,相关系数R均值从0.91提升到0.92;3通过对多模型协同反演产品的置信区间进行计算,可以有效地估算产品精度和误差,同时使得获取全湖反演叶绿素a浓度的误差空间分布情况成为可能.