位置:成果数据库 > 期刊 > 期刊详情页
基于评分差异度和用户偏好的协同过滤算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:北方民族大学计算机科学与工程学院,银川750021
  • 相关基金:国家自然科学基金资助项目(61462001); 北方民族大学NSFC前期培育项目(2012QZP02)
作者: 党博, 姜久雷
中文摘要:

针对传统协同过滤推荐算法仅通过使用用户评分数据计算用户相似度以至于推荐精度不高的问题,提出一种改进的协同过滤推荐算法。首先,以用户评分的平均值作为分界点得出用户间的评分差异度,并将其作为权重因子计算基于评分的用户相似度;其次,依据用户项目评分和项目类别信息挖掘用户对项目类别的兴趣度以及用户项目偏好,并以此计算用户偏好相似度;然后,结合上述两种相似度加权产生用户综合相似度;最后,融合传统项目相似度和用户综合相似度进行评分预测及项目推荐。实验结果表明,相对于传统的基于用户评分的协同过滤推荐算法,所提算法在数据集下的平均绝对误差值平均降低了2.4%。该算法可在一定程度上提高推荐算法精度以及推荐质量。

英文摘要:

To address the problem that the traditional collaborative filtering algorithms only use user's rating data to compute the user similarity, which leads to a poor recommendation precision, an improved collaborative filtering recommendation algorithm was put forward. Firstly,the user's score difference level was obtained by using user's average score as the boundary point,which was considered as a weighting factor in the user's similarity. Secondly,according to the user's rating data and the item category information,the user 's interest level for the item category and the users item preference were mined to calculate the user's preference similarity. Thirdly,the above two similarities were combined to get the intergrated similarity between users. Finally,the traditional item similarity and the intergrated similarity between users were fusioned to predict score and recommend items. The experimental results show that,compared with the traditional userbased collaborative filtering recommendation algorithm,the Mean Absolute Error( MAE) of the proposed algorithm is reduced by 2. 4% on average. The new algorithm can effectively improve the accuracy and quality of the recommendation algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679