位置:成果数据库 > 期刊 > 期刊详情页
一种边缘点特征图像配准算法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江工业大学信息工程学院,杭州310014, [2]中国科学院半导体研究所,北京100083
  • 相关基金:国家自然科学基金项目(60871093)资助; 浙江省教育厅科研项目(Y200907801)资助
中文摘要:

为解决图像的精确配准问题,提出了结合LoG算法的特征点的提取方法,并将尺度不变特征算法(SIFT)应用到图像的特征描述中.首先利用LoG算法计算边缘点,对边缘点的梯度值进行排序,选择梯度较大的点作为特征点;然后采用SIFT计算特征点的特征向量,利用最小距离算法找到两幅图像的匹配点对;最后利用最相关点和次相关点比例的方法排除错误的点对.实验结果证明,算法对具有光照、角度不同的两组图像能够实现精确的配准,准确率超过90%.

英文摘要:

The feature point extraction method is proposed combining with LoG algorithm,and Scale Invariant Feature Transform algorithm is applied to image feature extraction.First of all,LoG algorithm is used to compute the edge points,the edge points are sorted by the gradient values,and the points of lager gradient are selected as feature points;Then compute the feature vector of feature points with SIFT algorithm,and the minimum distance algorithm is used to find the matching points of two images;Finally,the wrong matching points are excluded by the ratio algorithm of the most relevant point and the second relevant point.The experimental results prove that the method proposed in this paper can achieve accurate matching for the two images with different illumination and angle,and the accuracy was over 90%.

同期刊论文项目
期刊论文 11 会议论文 9 著作 2
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212