给出L-滤子和L-fuzzy滤子空间的概念,讨论了固定集合X上全体L-滤子之集的一些格论性质。研究了L—fuzzy滤予空间范畴LFIL的若干范畴性质,给出了范畴LFIL中等子和乘积的构造,证明了LFIL是拓扑范畴,得到了范畴LFIL与范畴LCFIL之间存在着一对伴随函子的结果。
The notions of L-filter and L-fuzzy filter space are given, and lattice properties of the set of all L-filter on a fLxed set X are discussed. Then categorical properties of the L-fuzzy filter space category LFIL are studied. The constructs of equivalizer and product in LFIL are given, and LFIL is proved to be a topological category. It is proved that there is an adjunction between category LFIL and category LCFIL.