The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory(QCT) method on the 11A potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(θr),P(φr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.
The isotope effect on the stereodynamic properties in the title reaction is investigated by a quasi-classical trajectory (QCT) method on the 11At potential energy surface at a collision energy of 23.06 kcal/mol. The angular distributions P(φr ), P(θr), P(θr, φr), and the polarization-dependent generalized differential cross sections are calculated, which demonstrate the observable influences on the rotational polarization of the product by the isotopic substitution of H with D.