这份报纸与方程式的环警卫一起调查多路径多项式节目(MPP ) 的结束问题。同时为结束和 nontermination 建立足够的条件,作者建议强壮 / 弱的非结束的观点它 under/over-approximates 非结束。基于多项式理想理论,作者证明所有强壮的非终止的输入(SNTI ) 的集合和弱非终止的输入(WNTI ) 两个都对应于某些多项式理想的真实变化。而且,作者证明 SNTI 的变化是可计算出来的,并且在一些足够的条件下面, WNTI 的变化也是可计算出来的。然后由在平行检查计算 SNTI 和 WNTI 变化,考虑 MPP 的结束性质能被维护。作为后果,作者为 MPP 的结束分析建立一个新框架。
This paper investigates the termination problems of multi-path polynomial programs (MPPs) with equational loop guards. To establish sufficient conditions for termination and nontermination simultaneously, the authors propose the notion of strong/weak non-termination which under/over- approximates non-termination. Based on polynomial ideal theory, the authors show that the set of all strong non-terminating inputs (SNTI) and weak non-terminating inputs (WNTI) both correspond to tile real varieties of certain polynomial ideals. Furthermore, the authors prove that the variety of SNTI is computable, and under some sufficient conditions the variety of WNTI is also computable. Then by checking the computed SNTI and WNTI varieties in parallel, termination properties of a consid- ered MPP can be asserted. As a consequence, the authors establish a new framework for termination analysis of MPPs.