理论模拟研究了二维磁光阱原子束流量与饱和蒸汽压、冷却光强、激光失谐量的关系, 构建了二维磁光阱(2D-MOT)装置, 实验上实现了大流量的慢速原子束, 其测量值为2.1× 109/s.利用荧光法测量了各实验参数与流量的关系, 测量结果与数值模拟结果符合较好.
To study the relationship of atomic beam flow with cooling intensity, laser detuning, and magnetic field gradient, the numerical simulation is performed and a two-dimensional magneto-optical trap setup is built. A low-velocity atomic beam flow is generated with a total flux of 2.1 × 109/s. Theoretical analysis and experimental results are in good consistence. Optimal detuning and magnetic field gradient can produce the largest atomic beam flow.