采用有限元方法模拟了搅拌摩擦焊接过程中材料的流动行为以及残余应力的分布情况,结果显示,材料的切向流动构成搅拌头周围材料流动的主要形式,并且搅拌头周围材料的运动有较为明显的分层现象,随着搅拌头直径的不断增加,这种分层流动的现象变得更加明显。纵向残余应力的最大值产生在热影响区的边界,残余应力呈现典型的双峰特征,搅拌头直径的增加会导致高水平拉伸残余应力的分布区域变大。
Finite element method was used to study the material behavior and the residual stress distributions during the friction stir welding process. The results show that the flow of the material in the tangent direction takes the main contributions to the movement of the material in the friction stir welding process. A fluidized bed of material flow comes into being around the pin. With the increase of the pin's diameter, the laminar flow becomes much easier to be observed. The maximum of the longitudinal residual stress occurs in the boundary of the heat affected zone. The double peak feature of the longitudinal residual stress can be found. The region of the large residual stress becomes wider when the diameter of pin is increased.