提出了基于张量主成分分析的人脸图像压缩与重构算法,该算法依据K-L变换的原理找到用于图像压缩的投影矩阵,进而对人脸图像进行压缩.同时,也可以通过投影矩阵对人脸图像进行数据重构.通过在FERET和BioID人脸数据库的相关实验表明,与常规的主成分分析算法相比,张量主成分分析算法在同样的压缩比水平上能够实现更优的重构图像,定量分析表明张量主成分分析算法的重构误差和峰值信噪比亦优于常规的主成分分析算法.