利用上下解方法和带参数的紧向量场解集的连通性质研究了共振条件下一类二阶微分方程积分边值问题{u′′(t)=f(t,u(t)),t∈(0,1),u(0)=∫10u(s)dα(s),u(1)=∫10u(s)dβ(s)解的存在性.
This article concerns the second-order diferential equation with integral boundary conditions {u′′(t) = f(t, u(t)), t ∈(0, 1), u(0) = ∫10 u(s)dα(s), u(1) = ∫10 u(s)dβ(s). Under the resonance conditions, we apply the methods of lower and upper solutions and the connectivity properties of the solution set of parameterized families of compact vector felds to establish the existence of solutions.