本文考虑一类带调和势的非线性Schro·2dinger方程其中iφt=-△φ+|x|^2φ-μ|φ|^p-1φ-λ|φ|^q-1φ,x∈R^N,t≥0,其中μ〉0,λ〉0.当N=1,2时,1〈p〈q〈∞;当N≥3时,1〈p〈q〈等N+2/N-2,运用精巧的变分方法、势井方法和凸方法,得到了方程的整体解和爆破解存在的门槛.进一步回答了:当q〉p〉1+4/N时,方程的Cauchy问题的初值小到什么程度,其整体解存在?
This paper is concerned with a class of nonlinear Schro··dinger equations with a harmonic potential iφt=-△φ+|x|^2φ-μ|φ|^p-1φ-λ|φ|^q-1φ,x∈R^N,t≥0 where μ〉 0, λ〉0, 1〈p〈q〈N+2/N-2 when N ≥ 3 and 1〈p〈q〈∞ when N= 1, 2. By an intricate variational argument the authors derive out a threshold of blowing up and global existence by applying the potential well argument and the concavity method. Furthermore, they answer the question: How small are the initial data, the global solutions of the Cauchy problem of above equation exist for q 〉 p 〉 1 + 4/N?