位置:成果数据库 > 期刊 > 期刊详情页
基于优化的RBF神经网络模式识别新方法
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]燕山大学,河北秦皇岛066004, [2]河北省科学院,河北石家庄050000
  • 相关基金:国家自然科学基金(60274023)
中文摘要:

提出了一种基于Hough变换优化的RBF神经网络模式识别新方法,该方法把Hough变换应用于RBF神经网络的参数确定中,实现了RBF神经网络的隐层节点数和数据中心值的自适应获取,提高了RBF神经网络的泛化能力。仿真结果表明:此改进的RBF网络用于模式识别中具有识别能力强,计算量小,识别速度快的优点,具有广阔的应用推广前景。

英文摘要:

A new method of pattern recognition based on optimized RBF neural networks using Hough Transform was improved. Hough Transform was applied to the parameters selection and the adaption of the number and position of data centers of RBF neural networks that were realized in this method. Consequently, RBF neural networks designed with this method could generalize well. Experiments results show that the improved RBF neural networks applied in pattern recognition turn out to be a higher accuracy, faster and elegant way. The method possesses high value being generalized.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729