位置:成果数据库 > 期刊 > 期刊详情页
基于高光谱Hyperion数据的线性光谱混合模型与神经网络模型的比较
  • ISSN号:1009-2307
  • 期刊名称:《测绘科学》
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]东华理工学院地球科学与测绘工程学院,江西抚州344000, [2]国土资源部土地利用重点实验室,北京100035
  • 相关基金:国家自然科学基金项目(40271007);国土资源部百名优秀青年科技人才计划项目;地震动力学国家重点实验室开放基金(LED0506)
中文摘要:

混合像元问题是定量遥感中的热点问题之一,为了改进从遥感数据中提取定量信息,人们建立了各种混合光谱分解技术,其中线性光谱混合模型和神经网络模型就是两种比较成熟的方法。以陕西省横山地区的高光谱Hyperion数据为研究基础,通过最小噪声变换(MNF)、像元纯度指数(PPI)转换和RMS误差分析的迭代方法相结合提取影像中的纯净像元作为终端端元。分别运用神经网络模型和线性光谱混合模型对影像进行光谱分解,得到各个组分的分解图像。以标准植被指数(NDVI)影像为衡量标准,选取训练样本点,分别对两种模型进行回0-5分析,结果显示NDVI影像与线性光谱混合模型植被分解图像的剖定系数(R^2=0.91)要大干其与神经网络模型的判定系数(R^2=0.81)。进一步分析表明在一般情况下,线性光谱混合模型具有比神经网络模型略高的分离精度,但是神经网络模型对细部信息的提取的效果要好干线性光谱混合模型,最后提出了端元均方根误差(EAR)指数,一种新的混合像元分解的思路。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《测绘科学》
  • 中国科技核心期刊
  • 主管单位:国家测绘地理信息局
  • 主办单位:中国测绘科学研究院
  • 主编:程鹏飞
  • 地址:北京市海淀区莲花池西路28号
  • 邮编:100830
  • 邮箱:niu@casm.ac.cn
  • 电话:010-63880931
  • 国际标准刊号:ISSN:1009-2307
  • 国内统一刊号:ISSN:11-4415/P
  • 邮发代号:2-945
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21361