利用浸泡实验与电化学实验研究了低合金耐候钢CortenA和碳钢Q235在90℃地下水模拟溶液中的缝隙腐蚀行为.采用SEM,EDS和Raman光谱分析了缝内腐蚀产物膜的形貌和成分.结果表明,2种钢均发生了缝隙腐蚀,且随着腐蚀时间的延长缝隙腐蚀越严重;CortenA的缝隙腐蚀比Q235严重;在中性或偏酸性的溶液中,耐候钢的耐腐蚀性能优于碳钢,而在pH值为1的溶液中,耐蚀性则相反;合金元素Cr,Cu和Si对CortenA在溶液中的耐缝隙腐蚀性能不利.
Carbon steel and low alloy steel as candidates of high-level radioactive waste packaging materials,will undergo groundwater corrosion during long term disposal in underground repository, so it is necessary to study the corrosion behaviors of carbon steel and low alloy steel in the specific environment. Crevice corrosion behaviors of carbon steel Q235 and low alloy weathering steel Corten A were studied in a simulated groundwater at 90 ℃through immersion tests and electrochemical measurements. SEM, EDS and Raman spectra were employed to analyze the corrosion product scales. The results show that both steels occured crevice corrosion and the crevice corrosion depth increased with corrosion time. Corten A underwent more serious crevice corrosion than Q235. In neutral or acidic solution, the corrosion resistance of Corten A was superior to Q235, but when the pH value of the solution was lower than 1, Corten A exhibited lower corrosion resistance than Q235. The alloying elements Cr, Cu and Si in Corten A were harmful to the resistance to crevice corrosion in the solution.